Table of Contents

Biographical Sketch	1
Phosphonium Ionic Liquids	2-11
CYPHOSIL Phosphonium Salts	
Ionic Liquids & Ionic Liquid Kits	13
New Catalyst and Ligand Kits	
Degussa Heterogeneous Catalyst Kit	14-15
DSM MonoPhos™ Ligand Kit	
Solvias Walphos Ligand Kit	
Solvias Mandyphos™ Ligand Kit	
Solvias Josiphos Ligand Kit	21
Buchwald Biaryl Phosphine Ligand Kit	22
New Products Introduced Since Chemiker XIX	
Metal Catalysts for Organic Synthesis	23-29
Other New Products	
Phosphorus Ligands & Compounds	
Air-Stable, Non-Pyrophoric Phosphine Ligand Precursors	
Boronate Esters for Suzuki Coupling	

©Copyright 2003 by **STREM CHEMICALS, INC.** 7 Mulliken Way Newburyport, MA 01950-4098 Tel.: (978) 462-3191 Fax: (978) 465-3104 (Toll-free numbers below US & Canada only) Tel.: (800) 647-8736 Fax: (800) 517-8736 Email: info@strem.com

STREM CHEMICALS, INC. Postfach 1215 77672 KEHL (Germany) Telefon: 0 78 51 / 7 58 79 Email: strem.europe@wanadoo.fr

The Strem Chemiker Vol. XX, No. 1 June, 2003

STREM CHEMICALS, INC.

15, rue de l'Atome Zone Industrielle 67800 BISCHHEIM (France) Tel.: (33) 03 88 62 52 60 Fax: (33) 03 88 62 26 81 Email: strem.europe@wanadoo.fr

STREM CHEMICALS UK

48 High Street Orwell, Royston England SG8 5QN Tel.: 01223 207430 Fax: 01223 208138 Email: stremchemicals.uk@btinternet.com

www.strem.com

Standing, L-R: Donato Nucciarone, Wayde Teutenberg, Christine Kennedy, Cyril Bourget, Andrew Downard, Christine Bradaric, Yuehui (Joey) Zhou. Seated, L-R: John Hillhouse, Mike Humeniuk, Angelo Melaragni, Janice Graham, Boban Jokovljevic. Inset: Al Robertson.

 Winner of the 2003 ACS Award for Distinguished Service in the Advancement of Inorganic Chemistry (Sponsored by Strem Chemicals, Inc.) Richard Eisenberg, Univ. of Rochester

Previous winners include:

- 2002 Thomas J. Meyer
- 2001 John P. Fackler, Jr.
- 2000 John D. Corbett
- 1999 Malcolm H. Chisholm

 MSDS Sheets and Technical Notes are now available at www.strem.com

Phosphonium Ionic Liquids

Christine J. Bradaric, Andrew Downard,* Christine Kennedy, Allan J. Robertson, and Yuehui Zhou

Cytec Canada Inc., P.O. Box 240, Niagara Falls, Ontario, Canada, L2E 6T4 phone: 905-356-9000, fax: 905-374-5819

1 - Ionic Liquids: A Brief History

The term "ionic liquids" is usually used to describe ionic salts with melting points less than ~100 °C. Many of the most interesting systems actually have melting points around or below room temperature. The story of ionic liquids has been described elsewhere by some of the key workers in the field, both from a scientific^{1a} and personal² perspective, but is worth reviewing briefly here. The first report of a room temperature molten salt was made by Walden in 1914, who noted the physical properties of ethylammonium nitrate (mp: 12-14°C) formed by the reaction of ethylamine with concentrated nitric acid.³ The next half century saw sporadic reports of ionic liquids as media for electrochemical studies and, less commonly, as solvents for organic reactions.^{1a} Much of this work involved eutectic mixtures of chloroaluminate-based salts such as AICl₃–NaCl and pyridinium hydrochloride.⁴ lonic liquids didn't reach a more general audience until seminal research efforts by the groups of Osteryoung⁵ and Wilkes^{2,6} in the 1970s, and Hussey⁷ and Seddon⁸ in the 1980s. This period also saw the first use of ionic liquids as reaction media for organic synthesis,⁹ and, in 1990, for biphasic catalysis.¹⁰ In the early 1990s, a report by Wilkes and co-workers describing the first air and moisture stable imidazolium salts, based on tetrafluoroborate, [BF₄], and hexafluorophosphate, [PF₆],¹¹ fueled further interest in the field. This interest has seen explosive growth during the past decade.¹² Reflecting this, the number of papers published on ionic liquids has grown from approximately 40 per year in the early 1990s to multiple hundreds per year today.12

2 - Phosphonium Ionic Liquids

Compared to their quaternary nitrogen-based analogues, specific accounts of ionic liquids containing phosphonium cations are quite rare.¹ While ionic liquids containing nitrogen-based cations have undergone extensive investigation in a myriad of applications over the last several years, studies involving quaternary phosphonium systems are much rarer. Cytec Industries has a great deal of experience in the manufacture of quaternary phosphonium ionic liquids. Over the past several years our research program has developed a diverse range of new products by pairing tetraalkylphosphonium cations with various anions (Figure 1) to produce the CYPHOS[®] IL range of phosphonium ionic liquids.

Figure 1: Examples of anions that can be paired with tetraalkylphosphonium cations to produce ionic liquids.

3 - Synthesis of Phosphonium Ionic Liquids

3.1 – Alkylphosphine Precursors

Tertiary phosphines, [PR₃], can be prepared *via* free radical addition of phosphine gas, [PH₃],¹³ to alpha olefins,¹⁴ often in the presence of a suitable promoter such as DuPont's Vazo[®] series.¹⁵ While the pK_as for tertiary phosphines are typically lower than the corresponding amines, their larger radii and more polarizable lone pair make them more nucleophilic. Hence the kinetics of salt formation are, in general, much faster than for amines.^{16,17}

Typical phosphonium cations have the general formula $[R'PR_3]^+$, in which three of the alkyl groups are identical while the fourth is different (Eq. 1). This arises from the usual synthetic route (Eq. 1, from homologous tertiary phosphines) but does not have to be the case. Primary and secondary alkylphosphines (RPH₂, R₂PH) are also available and can be converted to asymmetric tertiary phosphines (RR'₂P or R₂R'P) through free radical addition to olefins.¹⁴ The resulting phosphonium cations have generic formulas of $[RR'_2R''P]^+$ and $[R_2R'R''P]^+$.

3.2 – Phosphonium Halides

Phosphonium salts, especially halides, have been available commercially for many years. Asymmetrical tetraalkylphosphonium halides, $[R'PR_3^+]X$, are typically prepared by nucleophilic (S_N2) addition of tertiary phosphines, $[PR_3]$, to haloalkanes, [R'X (X = CI, Br, I)] (Eq.

1),¹⁸ although other methods have been reported.¹⁹ These have historically had use as biocides²⁰ and phase transfer catalysts.²¹ Though innumerable phosphonium cations can be imagined as constituents of phosphonium ionic liquids, we have utilized the trihexyl(tetradecyl) phosphonium cation, $[(C_6H_{13})_3P(C_{14}H_{29})]^+$, in much of our work. This is for reasons of cost and convenience, and because we have found it works well in many cases.

$$\mathsf{PR}_3 + \mathsf{R}'\mathsf{X} \longrightarrow [\mathsf{R}'\mathsf{PR}_3]^{\dagger}\mathsf{X}^{-} \tag{1}$$

Burgeoning interest in ionic liquids prompted us to closely examine our own range of phosphonium salts in order to target their potential as ionic liquids. In fact, we discovered several ionic compounds that were liquid at or near room temperature. Trihexyl(tetradecyl)phosphonium chloride, long a commercial product, has subsequently seen new life as a starting material for the synthesis of numerous phosphonium ionic liquids by anion exchange reactions.²²

3.3 - Metathesis Routes to Phosphonium Ionic Liquids

Phosphonium halides can be converted by metathesis methods to other anions such as phosphinate, carboxylate, tetrafluoroborate, hexafluorophosphate, *etc.* (Figure 1).²² These conversions generally fall into two categories (Eq. 2-3), and ionic liquids containing the anions shown in Figure 1 can be synthesized by one or the other of these routes depending on the starting materials chosen.

$$\begin{array}{c} C_{6}^{(\bigcirc} \oplus_{j}^{C_{14}H_{29}} & O \\ C_{6}H_{13}^{(\bigcirc} \oplus_{j}^{C_{6}H_{13}} & + & R^{(\bigcirc} \oplus_{R}^{O}OH & \frac{+\operatorname{NaOH}}{-H_{2}O} & \left[\begin{array}{c} \oplus_{13}^{C_{14}H_{29}} \\ C_{6}H_{13}^{(\bigcirc} \oplus_{R}^{C_{6}H_{13}} \\ C_{6}H_{13}^{(\bigcirc} \oplus_{R}^{C_{6}H_{13}} \\ \end{array} \right] \left[\begin{array}{c} O \\ \oplus_{13}^{(\bigcirc} \oplus_{R}^{C_{6}} \\ R^{(\bigcirc} \oplus_{R}^{C_{6}} \\ \end{array} \right] & + \operatorname{NaCl} \\ \left(R = \swarrow & \swarrow & O \\ R = \swarrow & \bigcirc & O \\ \end{array} \right]$$

$$(4)$$

In addition to being novel ionic liquids, phosphonium phosphinates couple Cytec's existing expertise in phosphonium salt and phosphinic acid manufacturing. A notable example is derived from bis(2,4,4-trimethylpentyl)phosphinic acid (CYANEX[®] 272 Extractant) as shown in

Eq. 4. This is a well-known and popular solvent for the extraction of cobalt from nickel in both sulfate and chloride media,²³ and is currently used to produce more than half of the western world's cobalt.²⁴ Ionic liquids containing the bis(2,4,4-trimethylpentyl)phosphinate anion are thus of interest not only for the usual reasons, but particularly for solvent extraction applications.

3.4 - Halide Free Routes to Phosphonium Ionic Liquids

As indicated above, many phosphonium ionic liquids are prepared by quaternization of tertiary phosphines to form chlorides, with subsequent anion exchange if other anions are required.¹ The materials thus prepared inevitably contain residual chloride ions, which may adversely affect metal catalysts^{1,25} and/or contaminate reaction products. This is true, for example, of phosphonium ionic liquids used in the production of halogen-free epoxy resins²⁶ and polycarbonates.²⁷ In addition, anion exchange processes are typically wasteful and expensive, often involving the use of environmentally hazardous molecular solvents. Factors such as these increase the final cost of ionic liquids produced industrially, and effectively limit their application range. For these reasons and others, chloride free routes to phosphonium salts are desirable.²⁸

Halogen free systems can be produced by direct reaction of tertiary phosphines with alkylating agents such as benzenesulfonate, alkyltosylates (some examples of which have been described previously³⁶), trialkylphosphates, and dialkylsulfates (see Eq. 5-7).

$$\begin{array}{rcl} SO_2(OR)_2 &+ & PR'_3 &\longrightarrow & [RPR'_3]^{\dagger}[SO_3(OR)]^{-} & (5) \\ O=P(OR)_3 &+ & PR'_3 &\longrightarrow & [RPR'_3]^{\dagger}[PO_2(OR)_2]^{-} & (6) \\ O=PR(OR)_2 &+ & PR'_3 &\longrightarrow & [RPR'_3]^{\dagger}[PRO_2(OR)]^{-} & (7) \end{array}$$

4 - Properties of Phosphonium Ionic Liquids

One major difference between phosphonium and ammonium salts is their stability with respect to degradation under various conditions.^{36,29} For example, although both can decompose by internal displacement at higher temperatures (Eq. 8), phosphonium salts are generally more thermally stable than ammonium salts in this respect.²⁹

$$[R_4E]^+X^- \xrightarrow{\Delta} R_3E + R-X (E = N, P)$$
(8)

Unlike their ammonium counterparts, which can undergo facile Hoffmann or β -elimination in the presence of base,³⁰ phosphonium salts decompose to yield a tertiary phosphine oxide and alkane under alkaline conditions (Eq. 9).³¹ Alternatively, depending on the nature of R and R', stable phosphoranes can be formed (Eq. 10) such as well known Wittig reagents. While the decomposition of phosphonium salts by these pathways may occur even at room temperature in some cases, contrasting examples are known where tetraalkylphosphonium halides

can be combined with concentrated sodium hydroxide well above room temperature without any degradation²⁹ (*e.g.* $[(C_{16}H_{33})P(C_4H_9)]Br^{32})$.

 $\begin{bmatrix} R_3 P-CH_2-R' \end{bmatrix}^+ + OH^- \longrightarrow R_3 P=O + CH_3-R'$ (9) $\begin{bmatrix} R_3 P-CH_2-R' \end{bmatrix}^+ + OH^- \longrightarrow R3 P=CHR' + H_2 O$ (10)

While the decomposition point of neat phosphonium ionic liquids on heating varies somewhat depending on the anion, thermogravimetric analyses (TGA) indicate dynamic thermal stability in excess of 300 °C for many species. However, we note that dynamic thermal stabilities normally reported for ionic liquids are typically much higher than static thermal stabilities. Thus, most ionic liquids are not stable for extended periods of time at, or even well below, the "onset of decomposition" temperature typically measured by TGA. Figure 2 shows TGA data for trihexyl(tetradecyl)phosphonium tetrafluoroborate, which exhibits a profile typical of most phosphonium salts. This enhanced thermal stability relative to quaternary nitrogen based salts is an important factor when, for example, reaction products must be removed from an ionic liquid by high temperature distillation.

Viscosity is a particularly important characteristic for solvents being considered in industrial applications. Phosphonium based ionic liquids tend to have viscosities somewhat higher than their ammonium counterparts, especially at or near room temperature. However, on heating from ambient to typical industrial reaction temperatures (*e.g.* 70-100 °C), their viscosities generally decrease to < 1 P. (For comparison,

the viscosity of olive oil is approximately 0.9 P). This is shown for trihexyl(tetradecyl)phosphonium chloride in Figure 4. lonic liquid viscosities are also very sensitive to solutes,³³ and the addition of reactants and/or catalysts can be expected to further reduce viscosity. For example, mixing trihexyl(tetradecyl)phosphonium chloride with 1% (w/w) of hexane, water, or toluene decreases viscosity at all temperatures (Figure 3).

→ neat → + 1% hexane → +1% water → + 1% toluene

Figure 3: Viscosity with respect to temperature for trihexyl(tetradecyl)phosphonium chloride, $[(C_6H_{13})_3P(C_{14}H_{29})]Cl$, neat and with 1% (w/w) of impurities.

An important difference between imidazolium and phosphonium salts is the acidic protons present in the former. Relative to phosphonium cations, imidazolium cations are not entirely inert and can interact with solutes either through hydrogen bonding interactions or through the aromatic nature of the ring system.³⁴ Tetraalkylphosphonium salts do not have such acidic protons or aromatic rings, and consequently there is less potential for interaction with solutes.

5 – Uses of Phosphonium Ionic Liquids

Specific accounts of phosphonium ionic liquids in the journal literature are relatively rare. Two areas of exception are liquid crystalline applications (particularly the work of Weiss *et al.*)³⁵ and catalysis. Three accounts of catalysis in phosphonium ionic liquids have been reported: 1) tetraalkylphosphonium tosylates as solvents for hydroformylation;³⁶ 2) tetraalkylphosphonium halides as solvents for palladium catalyzed Heck

reactions;³⁷ and 3) trihexyl(tetradecyl)phosphonium chloride as a solvent for palladium mediated Suzuki cross-coupling reactions (Eq. 11).³⁸

This last application demonstrates a particularly elegant use of three phase behaviour exhibited bv mixtures of trihexyl(tetradecyl) phosphonium chloride, hexane, and water (Figure 3a). Although hexane and the ionic liquid are miscible in this case, three phases develop when water is added. Eq. 1 takes good advantage of this feature (Figure 3b), with product separation being easily accomplished by washing the reaction mixture with hexane and water to form a three layer system. The palladium catalyst remains fully dissolved in the central phosphonium ionic liquid layer, which can be recycled and reused. The product collects in the hexane layer and can be removed by decantation in virtually guantitative yield, while the by-products collect in the water layer and can be drained and discarded. Several cycles with no loss in yield or activity have been demonstrated using this work-up procedure. The same three phase behaviour is also observed for trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate.

Figure 3: Three phase behavior for phosphonium halides and phosphinates.

Contrasting the dearth in the journal literature, the use of phosphonium ionic liquids for various applications is covered in numerous patents. For example, several uses of ionic liquids for nuclear fuel reprocessing are protected in patents (assigned to British Nuclear Fuels Plc) which make no distinction based on composition.³⁹ Similarly, the use of any ionic liquids in inks for marker pens and ink jet printers has been claimed,⁴⁰ as has the use of any ionic liquid for removal of scale (typically BaSO₄ and CaSO₄, but also paraffin, wax, and sludge) from wellbores in oilfield applications.⁴¹

Although several other applications-related patents relevant to phosphonium ionic liquids have been filed in recent years, the work of Institute Français du Petrole (IFP) is of particular note. IFP have commercialized the use of certain ionic liquids as solvents for catalysis for the dimerization, codimerization, and oligomerization of olefins using transition metal catalysts (part of the Dimersol and Diafsol processes).⁴² Ionic liquids containing an alkylaluminum dihalide with a quaternary ammonium or phosphonium halide wherein the alkyl chains are less than 12 carbon atoms long, and which are liquid below 80 °C, are covered.

Of particular interest for Friedel-Crafts chemistry applications, ionic liquids comprised of mixtures of R_nMX_{3-n} (R = C₁-C₆; M = AI, Ga; X = halide; n = 0, 1, 2) and ammonium, imidazolium, pyridinium, or phosphonium halides, and the use of these in alkylation reactions have also been claimed.⁴³

6 - Conclusions

While the exact path for future development of ionic liquids is currently unclear, the potential for the field as a whole seems enormous. We believe that successful commercialization of technologies utilizing these new materials will be a key driver for their continued development and integration into the chemical industry. Large-scale, industrial manufacture of the ionic liquids themselves is clearly a necessary precursor for this process. Here we have described a small part of our continuing efforts in this area.

Equally important, however, is getting samples of production quality ionic liquids into the hands of capable researchers in both academia and industry. Ionic liquids based on quaternary nitrogen cations such as imidazolium and pyridinium have been extensively investigated in this regard. By comparison, phosphonium ionic liquids have previously received scant attention. Judging by patent activity, however, there is significant interest in phosphonium ionic liquids for industrial use. We believe that phosphonium salts offer a good alternative to ammonium salts for many applications. While neither family is "better" than the other, each will undoubtedly offer advantages and disadvantages for any particular function. This being the case, we anticipate that phosphonium ionic liquids will take their place alongside molecular solvents, imidazolium ionic liquids, and other modern materials in the toolboxes of chemists, chemical engineers, process developers, and inventors.

7 - Acknowledgements

We thank: Eduardo Kamenetzky, Chermeine Rivera, and William Mealmaker of Cytec Industries Research and Development (Stamford Labs) for physical characterization of ionic liquids; Donato Nucciarone, John Hillhouse, and Mike Humeniuk of Cytec Canada Inc. for input in the preparation of this manuscript; Ken Seddon and Alwar Ramani of the QUILL Centre for continued collaboration in this area.

8 - Notes and References

- [1] a) Gordon, C. M. Appl. Cat. A 2001, 222, 101; b) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156; c) Seddon, K. R. J. Chem. Tech. Biotech. 1997, 68, 351; d) Holbrey, J. D.; Seddon, K. R. Clean Prod. Proc. 1999, 1, 223; e) Seddon, K. R.; Stark, A.; Torres, M. –J. Pure Appl. Chem. 2000, 72, 2275; f) Sheldon, R. Chem. Commun. 2001, 2399; g) Welton, T. Chem. Rev. 1999, 99, 2071; h) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. Engl. 2000, 39, 3772; i) Zhao, D.; Wu, M.; Kou, Y.; Min, E. Catalysis Today C 2002, 2654, 1; j) Vygodskii, Y. S.; Lozinskaya, E. I.; Shaplov, A. S. Polymer Science Ser. C 2001, 34, 236; k) Dupont, J.; Consorti, C. S.; Spencer, J. J. Braz. Chem. Soc. 2000, 11, 337.
- [2] Willies, J. S. Green Chem. 2002, 73.
- [3] Walden, P. Bull. Acad. Imper. Sci. 1914, 1800.
- [4] Pagni, R. M., in: Mamantov, G.; Mamantov, C. B.; Braunstein, J. (Eds.), Advances in Molten Salt Chemistry, Vol. 6 1987, Elsevier, New York, 1987, pp. 211–346.
- [5] a) Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung. R. A. J. Am. Chem. Soc. 1975, 97, 3264; b) Robinson, J.; Osteryoung, R. A. J. Am. Chem. Soc. 1979, 101, 323.
- [6] Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 21, 1263.
- [7] Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inorg. Chem. 1983, 22, 2099.
- [8] Appleby, D.; Hussey, C. L.; Seddon, K. R.; Turp, J. E. Nature 1986, 323, 614.
- [9] Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. J. Org. Chem. 1986, 51, 480.
- a) Chauvin, Y.; Gilbert, B.; Guibard, I. J. Chem. Soc., Chem. Commun. 1990, 1715;
 b) Carlin, R. T.; Osteryoung, R. A. J. Mol. Catal. 1990, 63, 125.
- [11] Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965.
- [12] Seddon, K. R. Green Chem. 2002, G25.
- [13] We note that phosphine gas is highly toxic and pyrophoric, necessitating dedicated equipment and special handling techniques. The same is true, to a lesser extent, of many tertiary phosphines. Reactions involving these reagents should only be attempted by appropriately trained personnel.
- [14] Rahut, M. M.; Currier, H. A.; Semsel, A. M.; Wystrach, V. P. J. Org. Chem. 1961, 26, 5138.
- [15] See http://www.dupont.com/vazo/.
- [16] Buckler, S. A.; Henderson, W. A. J. Am. Chem. Soc. 1960, 82, 5791.
- [17] Henderson, W. A.; Schultz, C. J. J. Am. Chem. Soc. 1960, 82, 5759.
- [18] a) Johnson, W. A. Ylids and Imines of Phosphorus 1993, John Wiley and Sons, Inc., New York, USA; b) Hartley, F. R., Ed. The Chemistry of Organophosphorus Compounds Vol. 3: Phosphonium Salts, Ylids and Phosphoranes 1994, John Wiley and Sons, Inc., New York, USA.
- [19] For example, see: Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. Chem Commun. 2002, 724.
- [20] a) Jerchel, D. Chem. Ber. 1943, 76B, 600; b) Jerchel D.; Kimmig, J. Chem. Ber. 1950, 83, 277; c) Davis, K.P.; Talbot, R.E. US4673509 (Albright and Wilson, Ltd.); d) Talbot R. E. EP275207A2 (Albright and Wilson, Ltd.). e) Tolcide PS 72A Product Brochure, Albright and Wilson Biocides, Oldbury, Worley, West Midlands, U.K. f) Wehner, W.; Grade, R. CA2082994AA (FMC Corp. (U.K.) Ltd.).

- [21] For examples, see: a) Herriott, A. W.; Picker, D. J. Am. Chem. Soc. 1975, 97, 2345;
 b) Starks, C.M.; Liotta, C. Phase Transfer Catalysis, Academic Press, Inc., New York, 1978; c) Wolff, M.O.; Alexander, K.M.; Belder, G. Chemica Oggi, 2000, January/February, 29.
- [22] Robertson, A. J. WO0187900 2001 (Cytec Industries).
- [23] a) Rickelton, W. A.; Nucciarone, D. The Treatment of Cobalt/Nickel Solutions Using CYANEX Extractants in: Cooper W. C.; Mihaylov, I., Ed., Proceedings of the Nickel-Cobalt 97 International Symposium - Hydrometallurgy and Refining of Nickel and Cobalt 1997, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, pp. 275-292; b) Danesi, P. R.; Reichley-Yinger, L.; Mason, G.; Kaplan, L.; Horwitz, E. P.; Diamond, H. Solvent Extraction and Ion Exchange 1985 4, 435.
- a) Rickelton, W.A.; Robertson, A.J. US4353883 1982 (Cytec Technology Corp.). b) Roberston, A.J. US4374780 1983 (Cytec Technology Corp.). c) Rickelton, W. A.; Flett, D. S.; West, D.W. Solv. Extr. Ion. Exch. 1984, 2, 815.
- [25] a) Mørk, P. C.; Norgård, D. 8th Scandinavian Symposium on Lipids, Helsinki, Proceedings 1975, 339; b) Mørk P. C.; Norgård, D. J. Am. Oil Chem. Soc. 1976, 53, 506; c) Menzel, A.; Swamy, K.; Beer, R.; Hanesch, P.; Bertel, E.; Birkenheuer, U. Surface Science 2000, 454, 88.
- [26] Bayer, H; Fischer, W.; Hekele, W.; Wipfelder, E. US 6160077 2000 (Siemens AG).
- [27] Yokoyama, M.; Takano, J.; Hasegawa, M.; Tatsukawa, Y. US 5578694 1996 (Mitsubishi).
- [28] Mori, S.; Ida, K.; Ue, M. US 4892944 **1990** (Mitsubishi).
- [29] Wolff, M. O.; Alexander, K. M.; Belder, G Chimica Oggi 2000, 29.
- [30] a) Ingold, C. K; Schumacher, O. J. Chem. Soc. 1928, 3125; b) Hanhart, W.; Ingold, C. K. J. Chem. Soc. 1927, 999; c) March, J. Advanced Organic Chemistry, 4th Ed. 1992, John Wiley and Sons, Inc., New York, USA.
- [31] Zanger, M.; VanderWerf, C. A.; McEwen, W. E. J. Am. Chem. Soc. 1959, 81, 3806.
- [32] Campbell, J. B. US3639493 **1972** (DuPont)
- [33] Seddon, K. R.; Stark, A.; Torres, M. –J. Pure Appl. Chem. 2000, 72, 2275; b) Seddon, K. R.; Stark, A.; Torres, M. –J. in Clean Solvents: Alternative Media for Chemical Reactions and Processing 2002, ACS Symp. Ser. 819, M. Abraham, L. Moens, Eds., American Chemical Society: Washington D. C., Vol. 819.
- [34] Avent, A. G.; Chaloner, P. A.; Day, M. P.; Seddon, K. R; Welton, T. J. Chem. Soc. Dalton Trans. 1994, 3405.
- [35] a) Chen, H.; Kwait, D. C.; Gönen, S.; Weslowski, B. T.; Abdallah, D. J.; Weiss, R. G. *Chem. Mater.* 2002, *14*, 4063; b) Abdallah, D. J.; Robertson, A; Hsiu-Fu, H.;Weiss, R. G. *J. Am. Chem. Soc.* 2000, *122*, 3053; c) Abdallah, D. J.; Bachman, R. E.; Weiss, R. G. *J. Phys. Chem. B* 1999, *103*, 9269.
- [36] Karodia, N.; Guise, S.; Newlands, C.; Andersen, J. Chem. Commun. 1998, 2341.
- [37] Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett 1996, 1091.
- [38] McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. Chem. Commun. 2002, 1986.
- [39] a) Pitner, W. R.; Rooney, D. W.; Seddon, K. R. WO9941752 1999 (British Nuclear Fuels Plc); b) Mackintosh, C. G.; Fields, M.; Hutson, G. V.; Seddon, K. R. TW420809 2001 (British Nuclear Fuels Plc); c) Thied, R. C.; Jeapes, A. J.; Pitner, W. R.; Rooney, D. W.; Welton, T.; Hatter, J. E.; Seddon, K. R. WO0115175 2001 (British Nuclear Fuels Plc); d) Pitner, W. R.; Hebditch, D.; Hatter J. E.; Rooney, D. W.; Seddon, K. R.; Thied, R. C. WO0113379 2001 (British Nuclear Fuels Plc); e) McIntosh, C. G.; Fields, M.; Hutson, G. V.; Seddon, K. R. WO9806106 1988 (British Nuclear Fuels Plc).
- [40] Schwarz, W. M. US6048388 2000 (Xerox).
- [41] Palmer, B. J.; Fu, D.; Card, R. J.; Miller, M. J. WO0177486A1 2001 (Schlumberger).
- [42] Chauvin, Y.; Commereuc, D.; Guibard, I.; Hirschauer, A.; Olivier, H.; Saussine, L. US5104840 1992 (Institut Français du Petrole).
- [43] Ellis, B.; Hubert, F.; Wasserscheid, P. WO0041809 2000 (BP Chemicals Ltd.)

Products Referenced in the Article

Ionic Liquid Kit 3 : CYPHOSIL Phosphonium Salt Kit

96-6520

1 kit

Contains a 10g unit of each of the eight items listed below.

Also available in the following sizes for individual sale.

15 6370	Trihexyl(tetradecyl)phosphonium bis(trifluoromethane-	10g
15-0370	sulfonyl)amide CYPHOSIL 109	50g
15 6274	Trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethyl-	10g
15-0374	pentyl)phosphinate CYPHOSIL 104	50g
15 6279	Trihexyl(tetradecyl)phosphonium bromide	10g
15-6378	CYPHOSIL 102	50g
15 6202	Trihexyl(tetradecyl)phosphonium chloride	10g
15-6382	CYPHOSIL 101	50g
45 0000	Trihexyl(tetradecyl)phosphonium decanoate	10g
15-0500	CYPHOSIL 103	50g
15 6200	Trihexyl(tetradecyl)phosphonium dicyanamide	10g
15-6390	CYPHOSIL 105	50g
15 6204	Trihexyl(tetradecyl)phosphonium hexafluorophosphate	10g
15-0394	CYPHOSIL 110	50g
15 6308	Trihexyl(tetradecyl)phosphonium tetrafluoroborate	10g
15-0398	CYPHOSIL 111	50g

	NEW CATALYST and LIGAND KITS				
96-6650	Degussa Heterogeneous Catalyst Kit Contains a 10g unit of each of the 12 items listed below. Weight is quantity contained.	1 kit			
Also available in the following sizes for individual sale.					
46-1700	Palladium, 5% on activated carbon, eggshell, oxidic (50% wetted powder) Degussa E3	10g 50g			
46-1703	Palladium, 5% on activated carbon, eggshell, reduced (50% wetted powder) Degussa E5	10g 50g			
46-1706	Palladium, 10% on activated carbon, Pearlman (50% wetted powder) Degussa E4	10g 50g			
46-1709	Palladium, 5% on activated carbon, uniform, oxidic (50% wetted powder) Degussa E1	10g 50g			
46-1712	Palladium, 5% on activated carbon, uniform, oxidic (50% wetted powder) Degussa E2	10g 50g			
78-1500	Platinum, 5% on activated carbon, bismuth doped (50% wetted powder) Degussa F3	10g 50g			
78-1503	Platinum, 5% on activated carbon, eggshell, reduced (50% wetted powder) Degussa F2	10g 50g			
78-1506	Platinum, 3% on activated carbon, sulfided (50% wetted powder) Degussa F5	10g 50g			
78-1509	Platinum, 5% on activated carbon, uniform, reduced (50% wetted powder) Degussa F1	10g 50g			
78-1512	Platinum, 1% on activated carbon, vanadium doped (50% wetted powder) Degussa F4	10g 50g			
45-1863	Rhodium, 5% on activated carbon (50% wetted powder) Degussa G1	10g 50g			
44-4059	Ruthenium, 5% on activated carbon (50% wetted powder) Degussa H1	10g 50g			

Visit www.strem.com/code/degussakit.html for Recommendations Guide.

NE	NC	A	ΓA	'S1	ar	nd L	IGA	ND	KIT	S (c	ont.)								
The recommendations given above are believ to but not limited to any results to be obtained	Most often the catalyst performance can be	[O] This sample kit is designed as an entry poir	○ Note: Please refer to the different reaction	uid		CC Coupling reactions	Oxidations (Alcohols and Sugars)	Hydrogenation of (Hetero) Aromatic Rings	Reductive Alkylation and Amination	Hydrogenolysis Reactions	Hydrogenation of Nitro Groups	Reduction of the C=O group	Hydrogenation of CN bonds	Hydrogenation of C=C double bonds	Application Degussa #	Strem #	Catalyst		UIREN	Distributed by
ed to be acc or the infring	improved	t to find a s	classes in t		*uni = unifo	0		0	0	•	0		0	0	Щ	46-1709	5% Pd/C, uni, ox			
purate at the perment of a	significantl	uitable cat	he Recom		rm Preciou:	•		0	0	0	0		•	•	Ø	46-1712	5% Pd/C, uni, ox			
e time of pu ny proprieta	y by tailorii	alyst. Pleas	nendations		s Metal (PM)	0		0	0	•	•	0	•	•	8	46-1700	5% Pd/C, egg, ox			
iblication, bu iny right.	ng the cataly	e contact or	Guide for n		distribution; (•		0	0	•	•		0	•	E4	46-1706	10% Pd/C, Pearlman		_	
t Degussa m	st to your re	ie of our tec	iore detailed		ns-668 = 666	0		0		•	•	0	0	•	д	46-1703	5% Pd/C egg, red			
akes no wa	quirements	hnical spec	linformatic		ell PM distrit		•	0			0	0	0		FI	78-1509	5% Pt/C uni, red		-	
arranty with		ialists for fi	on regarding		bution; ox = c		0	0			0		0		F2	78-1503	5% Pt/C, egg, red	Cata		
respect the		arther recor	selectivity		oxidized PM;		•								3	78-1500	5% Pt/C, Bi doped	lysts		
reto, includ		mmendatio	, activity at		red = reduc						•				F4	78-1512	1% Pt/C, V doped	& Ini	P	
ling		ns.	nd reaction		ed PM				•		0				5	78-1506	3% Pt/C, sulfided	tiato		
			: conditions	 preferre 	O recomn			•				•			포	44-4059	5% Ru/C	S	SS	
				pe	nended			•				•	•		GI	45-1863	5% Rh/C		0	

NEW CATALYST and LIGAND KITS (cont.)								
Buchwald Biarvl								
Phose								
for Are	motio (P[C(CH ₃) ₃] ₂						
	matic (
Format	ion and							
96-5500 Contains t	ho smalle	15 1042						
				15-1043				
				(CH ₃) ₂ N P(C ₆ H ₁₁) ₂				
15-10	045	15-1140	15-1048	15-1145				
	P(C - H-)-							
15 1	745	15 1149	15 1040	[/] P(C ₆ H ₁₁) ₂				
10-17	45	10-1140	15-1049	15-1149				
Also availa	able in the	following sizes for inc	lividual sale.					
15-1043	racemic-2	2-(Di-t-butylphosphino)-	1,1'-binaphthyl, 98%	250mg 1g				
			500mg					
15-1045	2-(Di-t-bu	itylphosphino)biphenyl,	29 10a					
			50g					
			500mg					
15-1140	2-(Dicycle	ohexylphosphino)bipher	29 10a					
			50g					
15-1048	Di-t-butyl	phosphino-2'-(N,N-dime	ethylamino)biphenyl,	500mg				
	90 70			<u>29</u> 500mg				
15-11/5	2-(Dicycle	ohexylphosphino)-2'-(N,	2g					
10-1140	biphenyl,	98%	10g					
	2-(Dinher	avlahosahino)-2'-(NI NI-d	imethylamino)	50g				
15-1745	2g							
15-1148	2-(Dicyclohexylphosphino)-2'-methylbiphenyl, 500mg							
	2 (Ditbu	utulahosahino) 2' mothu	Ibinbonyl 00%					
15-1049	2-(DI-1-DU	ityipilospililoj-2 -illetily	idipriettyl, 99%	2g				
	Technica	I Note: See page 26.	10g 50g					
15-1149	2-(Dicycle biphenyl,	ohexylphosphino)-2',4',6 min. 98% X-PHOS	6'-tri-i-propyl-1,1'-	500mg 2g				
	Technica	I Note: See page 27.						

info@strem.com • technical@strem.com • quotation@strem.com • order@strem.com 27

New Products Introduced Since Chemiker XIX (cont.)							
	OTHER NEW PRODUCTS (cont.)						
	lododioxobis(triphenylphosphine)rhenium (V), 98%	1g 5g					
0 ^{∕′′} P(C ₆ H ₅) ₃ 75, 2245							
SILICON							
0 	 Deloxan® THP II Macroporous, Thiourea-Functionalized Polysiloxane (Metal Absorbing Resin) Deloxan® THP II is a Registered trade mark of Deg Technical Note: 1. Deloxan® THP II is a metal absorbing resin w precious and heavy metals, especially Ru, Rh Cd Ha and Bh. The registing a chart way were the 	50g 250g jussa AG. /ith a high affinity for h, Pd, Pt, Au, Cu(I), w concentrations of					
14-1870	retal ions from either aqueous or organic sol presence of complexing agents such as phos nitriles. The particle size and morphology allo	w concentrations of utions, even in the phines, amines and ow for easy handling					
Reference:							
1. Extraction and Ion Excl	hange, 1991 , 9(2), 289.	25g					
14-7750	Triethylsilane, 99%	100g					
14-7850	Triethylsilylacetylene, min. 97%	5g 25g					
SILVER 47-1700	Silver perrhenate 99% (99 995+%-Re)	1g 5g					
STRONTIUM		25g					
38-2100	Strontium nitrate, 99+% (ACS)	250g 1kg					
YTTRIUM	Yttrium (III) phosphate hydrate (99.99%-Y)	5g 25g					
39-2960 PH	OSPHORUS LIGANDS and COMPOUNDS	9					
15-0800	Cyclohexyldichlorophosphine, 98%	1g 5g					
The A	Di-2-norbornylphosphine, min. 98% (mixture of endo and exo isomers)	1g 5g					
15-1460	Di 2 porbornylabogabing min 08% (mixture of	10a					
15-1461	endo and exo isomers) (10 wt% in hexane)	50g					
	(1R,1R,2R,2R)-(-)-2,2-Dipnenyipnospnino-1,1- bicyclopentyl, 99% (R,R)-BICP Note: Sold in collaboration with DSM for research	500mg purposes only.					
	 Technical Notes: Ligand used in the enantioselective, rhodium-ca hydrogenation of α-(acylamino)-acrylic acids. Ligand used with ruthenium catalysts for enanti hydrogenation of aromatic ketons. (Ref. 1) 1.1% L*/1.0% 	atalyzed oselective					
	Ph	Ph					
15-1742	IHF, H2 1 ATM, 10 NHAC 24 h, 25° C 95	0% conv. % ee NHAc					
References:							
1. J. Org. Chem., 1999 , 6	4, 2127.						
2. J. Am. Chem. Soc., 19	97 , 779, 1799.						

New Products Introduced Since Chemiker XIX (cont.)							
PHOSPHORUS LIGANDS and COMPOUNDS (cont.)							
15-1743	(1S,1'S,2S,2'S)-(+)-2,2'-Diphenylphosphino-1,1'- bicyclopentyl, 99% (S,S)-BICP	100mg 500mg					
	Note: 1. See 15-1742 page 31.						
15-1800	Di-i-propylchlorophosphine, min. 98%	1g 5g					
15-1815	Di-o-tolylchlorophosphine, min. 98%	1g 5g					
C_4H_9 P_4H_9 C_4H_9 P_4H_9 P	2,8,9-Tri-i-butyl-2,5,8,9-tetraaza-1- phosphabicyclo[3.3.3]undecane, 97%	250mg 1g 5g					
15-6020							
15-7940	Tris(4-methoxy-3,5-dimethylphenyl) phosphine, min. 98%	1g 5g					

Air-stable, Non-pyrophoric Phosphine Ligand Precursors	^H (СН₅)вС СН₅ СН₅ 15-1023	(CH _b) _b C (CH _b) _b C 15-1028	H P n-Bu n-Bu 15-5990
(CH ₃) ₃ C	H P 15-6160	CH ₃ CH ₂	H H ₃ C CH ₃ H ₃ C H ₃ C H ₃ CH ₃ H ₅ -6560

Technical Note:

1. Non-pyrophoric, air-stable derivative suitable as a replacement for the neat phosphine in a variety of stoichiometric and catalytic processes.

Reference:

1. Orgar	nic Letters, 2001 , 3, 4295.	
	Di-t-butylmethylphosphonium tetrafluoroborate, 99%	1g
15-1023		5g
	Technical Note: See page 26.	
15-1028	Di-t-butylphenylphosphonium tetrafluoroborate 97%	1g
10 1020		5g
15-5990	Tri-n-butylphosphonium tetrafuoroborate 99%	1g
10 0000		5g
15-6000	Tri-t-butylphosphonium tetrafluoroborate 99%	1g
10 0000		5g
15-6160	Tricyclobexylphosphonium tetrafluoroborate 99%	1g
10 0100		5g
15 6355	Triethylphosphonium tetrafluorohorate, 00%	1g
10-0000		5g
15 6560	Trimethylphosphonium tetrafluoroborate, 00%	1g
13-0300		5g

